Электростанции – современный способ выработки энергии. Электростанция: определение и виды Домашняя электростанция – это не мечта

Электростанции служат для снабжения электричеством стационарных и подвижных объектов. Они являются совокупностью установок, аппаратуры и оборудования, которое используется для производства электроэнергии, вместе с необходимыми для этого зданиями и сооружениями, расположенными на определенной территории. Современные электростанции могут запускаться за короткое время, защищены от атмосферных осадков и механического воздействия. Самой крупной проектируемой является Эвенкийская гидроэлектростанция.

Зачем нужны электростанции?

Электростанцию можно смело назвать одной из важнейших конструкций, необходимых для обеспечения жизнедеятельности населения. Без электроэнергии сегодня не может существовать ни один населенный пункт или предприятие. Современные электростанции строятся вдали от густонаселенных территорий, состоят из комплекса зданий и установок, делятся на различные типы и виды, объединенные общим принципом. Он заключается в том, что все они работают от системы генераторов, производящих энергии посредством вращения вала.

Виды электростанций

По способу получения энергии электростанции делятся на:

  • атомные. Энергия производится ядерными реакторами и рядом специализированных установок и систем;
  • тепловые. Основным является внешнее топливо, которое при горении создает энергию для оборачивания вала генератора;
  • гидроэлектростанции. В качестве главной «силы» выступает естественная энергия рек, на которых устанавливаются плотины;
  • ветроэлектростанции. Зависят от воздушных масс;
  • геотермальные. Их питают подводные тепловые источники;
  • солнечные. Поглощают и преобразуют солнечную энергию.

По назначению электростанции делятся на следующие виды:

  • силовые. Необходимы для электроснабжения крупных потребителей, таких как города и заводы;
  • зарядные. Используются для заряда различных аккумуляторов и батарей, оснащаются зарядными устройствами, а также в составе электростанции обязательно имеется электропривод постоянного тока ;
  • осветительные. Оснащаются комплектном прожекторов и светильников, предназначены для освещения хозяйственных объектов и строительных площадок;
  • специальные. Используются при проведении сварочных и иных типов работ.

Также электростанции подразделяются:

  • на переменные и постоянные (по роду тока);
  • на дизельные и бензиновые (по типу двигателя);
  • на больше-, средне- и маломощные (по мощности);
  • на низкого и высокого напряжения (по напряжению).

ЭЛЕКТРОСТАНЦИЯ, электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для произ-ва электрич. энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции, гидроэлектрические станции, гидроаккумулирующие электростанции, атомные электростанции, а также приливные электростанции, ветроэлектро-станции, геотермические электростанции и Э. с магнитогидродинамическим генератором.

Тепловые Э. (ТЭС) являются основой электроэнергетики; они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органич. топлива. По виду энергетич. оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Осн. энергетич. оборудование совр. тепловых паротурбинных Э. составляют котлоагрегаты, паровые турбины, турбогенераторы, а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, конденсаторы, воздухоподогреватели, электрич. распределительные устройства. Паротурбинные Э. подразделяются на конденсационные электростанции и теплоэлектроцентрали (теплофикац. Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, к-рый поступает в конденсационную турбину; внутр. энергия пара преобразуется в турбине в механич. энергию и затем электрич. генератором в электрический ток. Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, наз. также ГРЭС.

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт*ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетич. установки с газовыми турбинами. Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы "пик" или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбиниров. парогазовых установок (ПГУ), в к-рых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. наз. энергетич. установка, оборудованная одним или неск. электрич. генераторами с приводом от дизелей. На стационарных дизельных Э. устанавливаются 4-тактные дизельагрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и энергопоезда (по эксплуатац. характеристикам они относятся к стационарным Э.) оснащаются неск. дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отд. шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в с. х-ве, в лесной пром-сти, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветит, сетей. На транспорте дизельные Э. применяются как осн. энергетич. установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнич. сооружения (плотина, водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание напора, и энергетич. оборудование (гидротурбины, гидрогенераторы, распределит, устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрич. генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирую-щие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещёнными в нём гидроагрегатами является частью плотины. В деривац. ГЭС вода реки отводится из речного русла по водоводу (деривации), имеющему уклон, меньший, чем ср. уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к след, деривац. ГЭС. Деривац. ГЭС сооружают гл. обр. на реках с большим уклоном русла и, как правило, по совмещённой схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от др. Э., гл. обр. в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их осн. назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда др. Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за перио-дич. характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, к-рые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит ядерный реактор, где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, к-рый поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрич. контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Осн. оборудование станции - ветродвигатель и электрич. генератор. Ветровые Э. сооружают преим. в р-нах с устойчивым ветровым режимом.

Геотермическая Э.- паротурбинная Э., использующая глубинное тепло Земли. В вулканич. р-нах термальные глубинные воды нагреваются до темп-ры св. 100 "С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермич. Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после хим. очистки используется для нужд теплофикации. Отсутствие на геотермич. Э. котлоагрега-тов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутр. энергии электропроводящей среды (жидкости или газа).

Лит. см. при статьях Атомная электростанция. Ветроэлектрическая станция. Гидроэлектрическая станция, Приливная электростанция. Тепловая паротурбинная электростанция, & также при ст. Наука (раздел Энергетическая наука и техника. Электротехника) в 24-м томе БСЗ, книга II - "СССР", стр. 401. В. А. Проку дин.

Электрическая энергия, которую активно стали использовать, по историческим меркам, не так давно, существенным образом изменила жизнь всего человечества. В настоящее время разные виды электростанций вырабатывают огромное количество энергии. Конечно, для более точного представления можно было найти конкретные числовые значения. Но для качественного анализа это не так важно. Важно отметить тот факт, что электрическая энергия используется во всех сферах человеческой жизни и деятельности. Современному человеку даже трудно себе представить, как можно было обходиться без электричества еще каких-то сто лет тому назад.

Высокая потребность в требует и соответствующих генерирующих мощностей. Для выработки электричества, как иногда выражаются люди в обиходе, используются тепловые, гидравлические, атомные и другие виды электростанций. Как не трудно заметить, конкретный вид генерации определяется тем видом энергии, который требуется для выработки электрического тока. На гидроэлектростанциях энергия падающего с высоты водного потока превращается в электрический ток. Точно так же электростанции на газу превращают в электричество тепловую энергию сгорающего газа.

Всем известно, что в природе действует закон сохранения энергии. Все перечисленные по своей сути превращают один вид энергии в другой. В происходит цепная реакция распада определенных элементов с выделением тепла. Это тепло с помощью определенных механизмов превращается в электричество. Точно по такому же принципу действуют и тепловые электростанции. Только в этом случае источником тепла служит органическое топливо - уголь, мазут, газ, торф и другие вещества. Практика последних десятилетий показала, что такой способ выработки электроэнергии весьма затратен наносит существенный ущерб окружающей среде.

Проблема заключается в том, что запасы на планете ограничены. Расходовать их следует экономно. Передовые умы человечества давно поняли это и ведут активный поиск выхода из создавшегося положения. Одним из возможных вариантов выхода считаются альтернативные электростанции, которые работают на других принципах. В частности для выработки энергии используется солнечный свет и ветер. Солнце будет светить всегда и ветер дуть никогда не устанет. Как выражаются специалисты, это неиссякаемые или которые нужно рационально использовать.

Совсем недавно перечень, в который входят виды электростанций, был коротким. Всего три позиции - тепловые, гидравлические и атомные. В настоящее несколько известных в мире компаний ведут серьезные исследования и опытно-конструкторские разработки в области применения солнечной энергии. В результате их деятельности на рынке появились преобразователи солнечного света в электричество. Следует отметить, что КПД их еще оставляет желать лучшего, но эта проблема рано или поздно будет решена. Точно так же обстоят дела с утилизацией энергии ветра. получают все большее распространение.

3.4. РАННИЕ ЭЛЕКТРОСТАНЦИИ

Электростанции, под которыми понимают фабрики по производству электрической энергии, подлежащей распределению между различными производителями, появились не сразу. В 70-х и начале 80-х годов XIX в. место производства электроэнергии не было отделено от места потребления.

Электрические станции, обеспечивавшие электроэнергией ограниченное количество потребителей, назывались блок-станциями (не путать с современным понятием блок-станций, под которым некоторые авторы понимают фабрично-заводские теплоэлектроцентрали). Такие станции иногда называли «домовыми».

Развитие первых электростанций было сопряжено с преодолением трудностей не только научно-технического характера. Так, городские власти запрещали сооружение воздушных линий, не желая портить внешний вид города. Конкурирующие газовые компании всячески подчеркивали действительные и мнимые недостатки нового вида освещения.

На блок-станциях в качестве первичных двигателей применялись в основном поршневые паровые машины и в отдельных случаях двигатели внутреннего сгорания (в то время являвшиеся новинкой), широко использовались локомобили. От первичного двигателя к электрическому генератору делалась ременная передача. Обычно один паровой двигатель приводил в действие один-три генератора; поэтому на крупных блок-станциях устанавливались несколько паровых машин или локомобилей. Для регулировки натяжения ремней электрические генераторы монтировались на салазках. На рис. 3.7 показан вид электростанции для освещения одного дома.

Впервые блок-станции были построены в Париже для освещения улицы Оперы. В России первой установкой такого рода явилась станция для освещения Литейного моста в Петербурге, созданная в 1879 г. при участии П.Н. Яблочкова.

Рис. 3.7. Блок-станция - электростанция с двумя генераторами (внизу справа) и локомобилем (слева) для освещения одного дома

Однако идея централизованного производства электроэнергии была настолько экономически оправданной и настолько соответствовала тенденции концентрации промышленного производства, что первые центральные электростанции возникли уже в середине 80-х годов XIX в. и быстро вытеснили блок-станции. В связи с тем что в начале 80-х годов массовыми потребителями электроэнергии могли стать только источники света, первые центральные электростанции проектировались, как правило, для питания осветительной нагрузки и вырабатывали постоянный ток.

В 1881 г. несколько предприимчивых американских финансистов под впечатлением успеха, которым сопровождалась демонстрация ламп накаливания, заключили соглашение с Т.А. Эдисоном и приступили к сооружению первой в мире центральной электростанции (на Пирльстрит в Нью-Йорке). В сентябре 1882 г. эта электростанция была сдана в эксплуатацию. В машинном зале станции было установлено шесть генераторов Т.А. Эдисона, мощность каждого составляла около 90 кВт, а общая мощность электростанции превышала 500 кВт. Здание станции и ее оборудование были спроектированы весьма целесообразно, так что в дальнейшем при строительстве новых электростанций развивались многие из тех принципов, которые были предложены Т.А. Эдисоном. Так, генераторы станций имели искусственное охлаждение и соединялись непосредственно с двигателем. Напряжение регулировалось автоматически. На станции осуществлялись механическая подача топлива в котельную и автоматическое удаление золы и шлака. Защита оборудования от токов короткого замыкания осуществлялась плавкими предохранителями, а магистральные линии были кабельными. Станция снабжала электроэнергией обширный по тому времени район площадью 2,5 км.

Вскоре в Нью-Йорке было построено еще несколько станций. В 1887 г. работали уже 57 центральных электростанций системы Т.А. Эдисона.

Исходное напряжение первых электростанций, от которого впоследствии были произведены другие, образующие известную шкалу напряжений, сложилось исторически. Дело в том, что в период исключительного распространения дугового электрического освещения эмпирически было установлено, что наиболее подходящим для горения дуги является напряжение 45 В. Чтобы уменьшить токи короткого замыкания, которые возникали в момент зажигания ламп (при соприкосновении углей), и для более устойчивого горения дуги включали последовательно с дуговой лампой балластный резистор.

Также эмпирически было найдено, что сопротивление балластного резистора должно быть таким, чтобы падение напряжения на нем при нормальной работе составляло примерно 20 В. Таким образом, общее напряжение в установках постоянного тока сначала составляло 65 В, и это напряжение применялось долгое время. Однако часто в одну цепь включали две другие лампы, для работы которых требовалось 2x45 = 90 В, а если к этому напряжению прибавить еще 20 В, приходящиеся на сопротивление балластного резистора, то получится напряжение 110 В. Это напряжение почти повсеместно было принято в качестве стандартного.

Уже при проектировании первых центральных электростанций столкнулись с трудностями, которые в достаточной степени не были преодолены в течение всего периода господства техники постоянного тока. Радиус электроснабжения определяется допустимыми потерями напряжения в электрической сети, которые для данной сети тем меньше, чем выше напряжение. Именно это обстоятельство заставило строить электростанции в центральных районах города, что существенно затрудняло не только обеспечение водой и топливом, но и удорожало стоимость земельных участков для строительства электростанций, так как земля в центре города была чрезвычайно дорога. Этим, в частности, и объясняется необычный вид нью-йоркских электростанций, на которых оборудование располагалось на многих этажах. Положение осложнялось еще тем, что на первых электростанциях приходилось размещать большое количество котлов, паропроизводительность которых не соответствовала новым требованиям, предъявленным электроэнергетикой.

Не менее удивился бы наш современник, увидев первые петербургские электростанции, которые обслуживали район Невского проспекта. В начале 80-х годов XIX в. они размещались на баржах, закрепленных у причалов на реках Мойке и Фонтанке (рис. 3.8). Строители исходили из соображений дешевого водоснабжения, кроме того, при таком решении не нужно было покупать земельные участки, близкие к потребителю.

В 1886 г. в Петербурге было учреждено акционерное «Общество электрического освещения 1886 г.»: (сокращенно называлось «Общество 1886 г.»), которое приобрело электростанции на реках Мойке и Фонтанке и построило еще две: у Казанского собора и на Инженерной площади. Мощность каждой из этих электростанций едва превышала 200 кВт.

Рис. 3.8. Электростанция на р. Фонтанке в Петербурге

В Москве первая центральная электростанция (Георгиевская) была построена в 1886 г. тоже в центре города, на углу Большой Дмитровки и Георгиевского переулка. Ее энергия использовалась для освещения прилегающего района. Мощность электростанции составляла 400 кВт.

Ограниченные возможности расширения радиуса электроснабжения привели к тому, что удовлетворить спрос на электроэнергию со временем становилось все труднее. Так, в Петербурге и Москве к середине 90-х годов возможности присоединения новой нагрузки к существующим электростанциям были исчерпаны и встал вопрос об изменении схем сети или даже об изменении рода тока.

Рост потребностей в электроэнергии эффективно стимулировал повышение производительности и экономичности тепловой части электрических станций. Прежде всего следует отметить решительный поворот от поршневых паровых машин к паровым турбинам. Первая турбина на электростанциях России была установлена в 1891 г. в Петербурге (станция на р. Фонтанке). За год до этого испытание турбины было проведено на станции, расположенной на р. Мойке. Выше уже отмечался наиболее существенный недостаток электроснабжения постоянным током - слишком малая площадь района, которая может обслуживаться центральной электростанцией. Удаленность нагрузки не превышала нескольких сотен метров. Электростанции стремились расширить круг потребителей своего товара - электроэнергии. Этим объясняются настойчивые поиски путей увеличения площади электроснабжения при условии сохранения уже построенных станций постоянного тока. Было предложено несколько идей, как увеличить радиус распределения энергии.

Первая идея, не получившая заметного распространения, касалась понижения напряжения электрических ламп, подключавшихся в конце линии. Однако расчеты показали, что при протяженности сети более 1,5 км экономически выгоднее было построить новую электростанцию.

Другое решение, которое могло во многих случаях удовлетворить потребность, состояло в изменении схемы сети: переходе от двухпроводных сетей к многопроводным, т.е. фактически к повышению напряжения

Трехпроводная система распределения электроэнергии была предложена в 1882 г. Дж. Гопкинсоном и независимо от него Т. Эдисоном. При этой системе генераторы на электростанции соединялись последовательно и от общей точки шел нейтральный, или компенсационный провод. При этом обычные лампы сохранялись. Они включались, как правило, между рабочими и нейтральным проводами, а двигатели для сохранения симметрии нагрузки можно было включать на повышенное напряжение (220 В).

Практическими результатами введения трехпроводной системы явилось, во-первых, увеличение радиуса электроснабжения примерно до 1200 м, во-вторых, относительная экономия меди (при всех прочих одинаковых условиях расход меди при трехпроводной системе был практически вдвое меньше, чем при двухпроводной).

Для регулирования напряжения в ветвях трехпроводной сети применялись различные устройства: регулировочные дополнительные генераторы, делители напряжения, в частности получившие значительное распространение делители напряжения Михаила Осиповича Доливо-Добровольского, аккумуляторные батареи. Трехпроводная система широко применялась как в России, так и за рубежом. Она сохранилась вплоть до 20-х годов XX в., а в отдельных случаях применялась и позднее.

Максимальный вариант многопроводных систем пятипроводная сеть постоянного тока, в которой применялись четыре последовательно включенных генератора и напряжение, увеличивалось вчетверо. Радиус электроснабжения возрастал всего до 1500 м. Однако эта система не получила широкого применения.

Третий путь увеличения радиуса электроснабжения предполагал сооружение аккумуляторных подстанций. Аккумуляторные батареи были в то время обязательным дополнением каждой электростанции. Они покрывали пики нагрузок. Заряжаясь в дневные и поздние ночные часы, они служили резервом.

Сети с аккумуляторными подстанциями получили некоторое распространение. В Москве, например, в 1892 г. была построена аккумуляторная подстанция в Верхних торговых рядах (ныне ГУМ), находившаяся на расстоянии 1385 м от Георгиевской центральной станции. На этой подстанции были установлены аккумуляторы, питавшие около 2000 ламп накаливания.

В последние два десятилетия XIX в. было построено много электростанций постоянного тока, и они долгое время давали значительную долю общей выработки электроэнергии. Мощность таких электростанций редко превышала 500 кВт, агрегаты обычно имели мощность до 100 кВт.

Все возможности увеличения радиуса электроснабжения при постоянном токе довольно быстро были исчерпаны, особенно в крупных городах.

В 80-х годах XIX в. начинают сооружаться электростанции переменного тока, выгодность которых для увеличения радиуса электроснабжения была бесспорной. Если не считать блок-станций переменного тока, построенных в Англии в 1882–1883 гг., то, по-видимому, первой постоянно действовавшей электростанцией переменного тока можно считать электростанцию Гровнерской галереи (Лондон). На этой станции, пущенной в эксплуатацию в 1884 г., были установлены два генератора переменного тока В. Сименса, которые через последовательно включенные трансформаторы Дж.Д. Голяра и Л. Гиббса работали на освещение галереи. Недостатки последовательного включения трансформаторов и, в частности, трудности поддержания постоянства тока были выявлены довольно быстро, и в 1886 г. эта станция была реконструирована по проекту С.Ц. Ферранти. Генераторы В. Сименса были заменены машинами конструкции С.Ц. Ферранти мощностью 1000 кВт каждая с напряжением на зажимах 2,5 кВ. Трансформаторы, изготовленные по проекту С.Ц. Ферранти, включались в цепь параллельно и служили для снижения напряжения в непосредственной близости от потребителей.

В 1889–1890 гг. С.Ц. Ферранти вновь вернулся к проблеме электроснабжения Лондона с целью обеспечения электроэнергией района лондонского Сити. В связи с высокой стоимостью земельного участка в центре города было решено построить электростанцию в одном из предместий Лондона, в Дептфорде, находящемся в 12 км от Сити. Очевидно, на таком большом расстоянии от места потребления электроэнергии электростанция должна была вырабатывать переменный ток. При сооружении этой установки были применены мощные по тому времени генераторы высокого напряжения (10 кВ) мощностью по 1000 л.с. Общая мощность Дептфордской электростанции составляла около 3000 кВт. На четырех городских подстанциях, питавшихся по четырем магистральным кабельным линиям, напряжение понижалось до 2400 В, а затем уже у потребителей (в домах) - до 100 В.

Примером крупной гидростанции, питавшей осветительную нагрузку в однофазной цепи, может служить станция, построенная в 1889 г. на водопаде вблизи г. Портленда (США). На этой станции гидравлические двигатели приводили в действие восемь однофазных генераторов общей мощностью 720 кВт. Кроме того, на электростанции были установлены 11 генераторов, предназначенных специально для питания дуговых ламп (по 100 ламп на каждый генератор). Энергия этой станции передавалась на расстояние 14 миль в г. Портленд.

Характерная особенность первых электростанций переменного тока - изолированная работа отдельных машин. Синхронизация генераторов еще не производилась, и от каждой машины шла отдельная цепь к потребителям. Легко понять, насколько неэкономичными при таких условиях оказались электрические сети, на сооружение которых расходовались колоссальные количества меди и изоляторов.

В России крупнейшие станции переменного тока были сооружены в конце 80-х и начале 90-х годов XIX в. Первая центральная электростанция построена венгерской фирмой «Ганц и К?» в г. Одессе в 1887 г. Основным потребителем энергии была однофазная система электрического освещения нового театра. Эта электростанция представляла собой для своего времени прогрессивное сооружение. Она имела четыре водотрубных котла общей производительностью 5 т пара в час, а также два синхронных генератора общей мощностью 160 кВт при напряжении на зажимах 2 кВ и частоте 50 Гц. От распределительного щита энергия поступала в линию длиной 2,5 км, ведущую к трансформаторной подстанции театра, где напряжение понижалось до 65 В (на которое были рассчитаны лампы накаливания). Оборудование электростанции было столь совершенным для своего времени, что, несмотря на то что топливом служил привозной английский уголь, стоимость электроэнергии была ниже, чем на более поздних петербургских и московских электростанциях. Расход топлива составлял 3,4 кг/(кВт?ч) [на петербургских электростанциях 3,9–5,4 кг/(кВт?ч)].

В том же году началась эксплуатация электростанции постоянного тока в Царском Селе (ныне г. Пушкин). Протяженность воздушной сети в Царском Селе уже в 1887 г. была около 64 км, тогда как два года спустя суммарная кабельная сеть «Общества 1886 г.» в Москве и Петербурге, составляла только 115 км. В 1890 г. Царскосельская электростанция и сеть были реконструированы и переведены на однофазную систему переменного тока напряжением 2 кВ. По свидетельству современников, Царское Село было первым городом в Европе, который был освещен исключительно электричеством.

Крупнейшей в России электростанцией для снабжения однофазной системы переменного тока была станция на Васильевском острове в Петербурге, построенная в 1894 г. инженером Н.В. Смирновым. Мощность ее составляла 800 кВт и превосходила мощность любой существовавшей в то время станции постоянного тока. В качестве первичных двигателей использовались четыре вертикальные паровые машины мощностью 250 л.с. каждая. Применение переменного напряжения 2000 В позволило упростить и удешевить электрическую сеть и увеличить радиус электроснабжения (более 2 км при потере до 3% напряжения в магистральных проводах вместо 17–20% в сетях постоянного тока). Таким образом, опыт эксплуатации центральных станций и однофазных сетей показал преимущества переменного тока, но вместе с тем, как уже отмечалось, выявил ограниченность его применения. Однофазная система тормозила развитие электропривода, усложняла его. Так, например, при подключении силовой нагрузки к сети Дептфордской станции приходилось дополнительно помещать на валу каждого синхронного однофазного двигателя еще разгонный коллекторный двигатель переменного тока. Легко понять, что такое усложнение электропривода делало весьма сомнительной возможность его широкого применения.

электрическая станция, совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории. В зависимости от источника энергии различают тепловые электростанции (См. Тепловая электростанция), гидроэлектрические станции (См. Гидроэлектрическая станция), гидроаккумулирующие электростанции (См. Гидроаккумулирующая электростанция), атомные электростанции (См. Атомная электростанция), а также приливные электростанции (См. Приливная электростанция), ветроэлектростанции (См. Ветроэлектрическая станция), геотермические электростанции (См. Геотермическая электростанция) и Э. с магнитогидродинамическим генератором (См. Магнитогидродинамический генератор).

Тепловые Э. (ТЭС) являются основой электроэнергетики (См. Электроэнергетика); они вырабатывают электроэнергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. По виду энергетического оборудования ТЭС подразделяют на паротурбинные, газотурбинные и дизельные Э.

Основное энергетическое оборудование современных тепловых паротурбинных Э. составляют Котлоагрегаты, паровые турбины (См. Паровая турбина), Турбогенераторы, а также пароперегреватели, питательные, конденсатные и циркуляционные насосы, Конденсаторы, воздухоподогреватели, электрические распределительные устройства (См. Распределительное устройство). Паротурбинные Э. подразделяются на конденсационные электростанции (См. Конденсационная электростанция) и теплоэлектроцентрали (См. Теплоэлектроцентраль) (теплофикационные Э.).

На конденсационных Э. (КЭС) тепло, полученное при сжигании топлива, передаётся в парогенераторе водяному пару, который поступает в конденсационную турбину (См. Конденсационная турбина), внутренняя энергия пара преобразуется в турбине в механическую энергию и затем электрическим генератором в Электрический ток. Отработанный пар отводится в конденсатор, откуда конденсат пара перекачивается насосами обратно в парогенератор. КЭС, работающие в энергосистемах СССР, называются также ГРЭС.

В отличие от КЭС на теплоэлектроцентралях (ТЭЦ) перегретый пар не полностью используется в турбинах, а частично отбирается для нужд теплофикации. Комбинированное использование тепла значительно повышает экономичность тепловых Э. и существенно снижает стоимость 1 квт·ч вырабатываемой ими электроэнергии.

В 50-70-х гг. в электроэнергетике появились электроэнергетические установки с газовыми турбинами (См. Газовая турбина). Газотурбинные установки в 25-100 Мвт используются в качестве резервных источников энергии для покрытия нагрузок в часы «пик» или в случае возникновения в энергосистемах аварийных ситуаций. Перспективно применение комбинированных парогазовых установок (ПГУ), в которых продукты сгорания и нагретый воздух поступают в газовую турбину, а тепло отработанных газов используется для подогрева воды или выработки пара для паровой турбины низкого давления.

Дизельной Э. называется энергетическая установка, оборудованная одним или несколькими электрическими генераторами с приводом от дизелей (См. Дизель). На стационарных дизельных Э. устанавливаются 4-тактныс дизель-агрегаты мощностью от 110 до 750 Мвт; стационарные дизельные Э. и Энергопоезда (по эксплуатационным характеристикам они относятся к стационарным Э.) оснащаются несколькими дизельагрегатами и имеют мощность до 10 Мвт. Передвижные дизельные Э. мощностью 25-150 квт размещаются обычно в кузове автомобиля (полуприцепа) или на отдельных шасси либо на ж.-д. платформе, в вагоне. Дизельные Э. используются в сельском хозяйстве, в лесной промышленности, в поисковых партиях и т. п. в качестве основного, резервного или аварийного источника электропитания силовых и осветительных сетей. На транспорте дизельные Э. применяются как основные энергетические установки (дизель-электровозы, дизель-электроходы).

Гидроэлектрическая станция (ГЭС) вырабатывает электроэнергию в результате преобразования энергии потока воды. В состав ГЭС входят гидротехнические сооружения (Плотина, водоводы, водозаборы и пр.), обеспечивающие необходимую концентрацию потока воды и создание Напора, и энергетическое оборудование (гидротурбины (См. Гидротурбина), Гидрогенераторы, распределительные устройства и т. п.). Сконцентрированный, направленный поток воды вращает гидротурбину и соединённый с ней электрический генератор.

По схеме использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС сооружают как на равнинных многоводных реках, так и на горных реках, в узких долинах. Напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды верхнего бьефа. В русловых ГЭС здание Э. с размещенными в нём гидроагрегатами является частью плотины. В деривационных ГЭС вода реки отводится из речного русла по водоводу (деривации (См. Деривация)), имеющему уклон, меньший, чем средний уклон реки на используемом участке; деривация подводится к зданию ГЭС, где вода поступает на гидротурбины. Отработавшая вода либо возвращается в реку, либо подводится к следующей деривационной ГЭС. Деривационные ГЭС сооружают главным образом на реках с большим уклоном русла и, как правило, по совмещенной схеме концентрации потока (плотина и деривация совместно).

Гидроаккумулирующая Э. (ГАЭС) работает в двух режимах: аккумулирования (энергия, получаемая от других Э., главным образом в ночные часы, используется для перекачки воды из нижнего водоёма в верхний) и генерирования (вода из верхнего водоёма по трубопроводу направляется к гидроагрегатам; вырабатываемая электроэнергия отдаётся в энергосистему). Наиболее экономичны мощные ГАЭС, сооружаемые вблизи крупных центров потребления электроэнергии; их основное назначение - покрывать пики нагрузки, когда мощности энергосистемы использованы полностью, и потреблять излишки электроэнергии в то время суток, когда другие Э. оказываются недогруженными.

Приливные Э. (ПЭС) вырабатывают электроэнергию в результате преобразования энергии морских приливов. Электроэнергия ПЭС из-за периодического характера приливов и отливов может быть использована лишь совместно с энергией др. Э. энергосистемы, которые восполняют дефицит мощности ПЭС в пределах суток и месяца.

Источником энергии на атомной Э. (АЭС) служит Ядерный реактор, где энергия выделяется (в виде тепла) вследствие цепной реакции деления ядер тяжёлых элементов. Выделившееся в ядерном реакторе тепло переносится теплоносителем, который поступает в теплообменник (парогенератор); образующийся пар используется так же, как на обычных паротурбинных Э. Существующие способы и методы дозиметрического контроля полностью исключают опасность радиоактивного облучения персонала АЭС.

Ветроэлектростанция вырабатывает электроэнергию в результате преобразования энергии ветра. Основное оборудование станции - ветродвигатель и электрический генератор. Ветровые Э. сооружают преимущественно в районах с устойчивым ветровым режимом.

Геотермическая Э. - паротурбинная Э., использующая глубинное тепло Земли. В вулканических районах термальные глубинные воды нагреваются до температуры свыше 100°С на сравнительно небольшой глубине, откуда они по трещинам в земной коре выходят на поверхность. На геотермических Э. пароводяная смесь выводится по буровым скважинам и направляется в сепаратор, где пар отделяется от воды; пар поступает в турбины, а горячая вода после химической очистки используется для нужд теплофикации. Отсутствие на геотермических Э. котлоагрегатов, топливоподачи, золоуловителей и т. п. снижает затраты на строительство такой Э. и упрощает её эксплуатацию.

Э. с магнитогидродинамическим генератором (МГД-генератор) - установка для выработки электроэнергии прямым преобразованием внутренней энергии электропроводящей среды (жидкости или газа).

Лит.: см. при статьях Атомная электростанция, Ветроэлектрическая станция, Гидроэлектрическая станция, Приливная электростанция. Тепловая паротурбинная электростанция, а также при ст. Наука (раздел Энергетическая наука и техника. Электротехника).

В. А. Прокудин.

Ссылки на страницу

  • Прямая ссылка: http://сайт/bse/93012/;
  • HTML-код ссылки: Что означает Электростанция в Большой Советской Энциклопедии;
  • BB-код ссылки: Определение понятия Электростанция в Большой Советской Энциклопедии.